The dynamics of single-substrate continuous cultures: the role of transport enzymes.

نویسندگان

  • Jason Shoemaker
  • Gregory T Reeves
  • Shakti Gupta
  • Sergei S Pilyugin
  • Thomas Egli
  • Atul Narang
چکیده

A chemostat limited by a single growth-limiting substrate displays a rich spectrum of dynamics. Depending on the flow rate and feed concentration, the chemostat settles into a steady state or executes sustained oscillations. The transients in response to abrupt increases in the flow rate or the feed concentration are also quite complex. For example, if the increase in the flow rate is small, there is no perceptible change in the substrate concentration. If the increase in the flow rate is large, there is a large increase in the substrate concentration lasting several hours or days before the culture adjusts to a new steady state. In the latter case, the substrate concentration and cell density frequently undergo damped oscillations during their approach to the steady state. In this work, we formulate a simple structured model containing the inducible transport enzyme as the key intracellular variable. The model displays the foregoing dynamics under conditions similar to those employed in the experiments. The model suggests that long recovery times (on the order of several hours to several days) can occur because the initial transport enzyme level is too small to cope with the increased substrate supply. The substrate concentration, therefore, increases until the enzyme level is built up to a sufficiently high level by the slow process of enzyme induction. Damped and sustained oscillations can occur because transport enzyme synthesis is autocatalytic, and hence, destabilizing. At low dilution rates, the response of stabilizing processes, such as enzyme dilution and substrate consumption, becomes very slow, leading to damped and sustained oscillations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dynamics of single-substrate continuous cultures: the role of ribosomes.

When a chemostat is perturbed from its steady state, it displays complex dynamics. For instance, if the identity of the growth-limiting substrate is switched abruptly, the substrate concentration and cell density undergo a pronounced excursion from the steady state that can last several days. These dynamics occur because certain physiological variables respond slowly. In the literature, several...

متن کامل

Role of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes

Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...

متن کامل

Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube

In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...

متن کامل

Biotransformation of salicylaldehyde to salicin using Varthemia persica cell suspension cultures

         Cell cultures of Varthemia persica DC. have been studied to evaluate their abilities in biotransformation of aromatic and aliphatic precursors. V. Persica (Asteraceae) is an aromatic plant growing in Iran. V. persica contain different terpens but its cell culture does not posses these compounds. Callus cultures of V. persica was established ...

متن کامل

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 222 3  شماره 

صفحات  -

تاریخ انتشار 2003